A new approach using the genetic algorithm for parameter estimation in multiple linear regression with long-tailed symmetric distributed error terms: An application to the Covid-19 data


Yalçınkaya A., Balay İ. G. , Şenoǧlu B.

Chemometrics and Intelligent Laboratory Systems, vol.216, 2021 (Journal Indexed in SCI Expanded) identifier

  • Publication Type: Article / Article
  • Volume: 216
  • Publication Date: 2021
  • Doi Number: 10.1016/j.chemolab.2021.104372
  • Title of Journal : Chemometrics and Intelligent Laboratory Systems

Abstract

© 2021 Elsevier B.V.Maximum likelihood (ML) estimators of the model parameters in multiple linear regression are obtained using genetic algorithm (GA) when the distribution of the error terms is long-tailed symmetric. We compare the efficiencies of the ML estimators obtained using GA with the corresponding ML estimators obtained using other iterative techniques via an extensive Monte Carlo simulation study. Robust confidence intervals based on modified ML estimators are used as the search space in GA. Our simulation study shows that GA outperforms traditional algorithms in most cases. Therefore, we suggest using GA to obtain the ML estimates of the multiple linear regression model parameters when the distribution of the error terms is LTS. Finally, real data of the Covid-19 pandemic, a global health crisis in early 2020, is presented for illustrative purposes.