Pre-calculated duty cycle optimization method based on genetic algorithm implemented in DSP for a non-inverting buck-boost converter

Ortatepe Z., KARAARSLAN A.

Journal of Power Electronics, vol.20, no.1, pp.34-42, 2020 (SCI-Expanded) identifier

  • Publication Type: Article / Article
  • Volume: 20 Issue: 1
  • Publication Date: 2020
  • Doi Number: 10.1007/s43236-019-00009-2
  • Journal Name: Journal of Power Electronics
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Compendex
  • Page Numbers: pp.34-42
  • Ankara Yıldırım Beyazıt University Affiliated: Yes


© 2019, The Korean Institute of Power Electronics.This study presents a pre-calculated duty cycle optimization method based on the genetic algorithm for a non-inverting buck-boost converter (NIBBC). In this method, the duty cycles are calculated via a discrete model estimation of NIBBC. Despite its high computational time requirements, this method can find solutions to problems that other methods cannot overcome due to their lack of linearity, continuity, or other features. This algorithm is developed using the TMS320F28335 digital signal processor, which is a 32-bit floating point processor operating at 150 MHz. The robustness and stability of this method at varying input voltages, loads, and parameters are then analyzed following the IEEE and IEC standards. The experimental results verify the simulation results and highlight the efficiency, power quality, wide output voltage range, and stability of the proposed method.