Effects of a mineralization-promoting peptide on the physical and chemical properties of mineral trioxide aggregate


Öztürk Z., Bal C., GÜNGÖRMÜŞ M., Aksoy M.

Journal of the Mechanical Behavior of Biomedical Materials, vol.138, 2023 (SCI-Expanded) identifier identifier identifier

  • Publication Type: Article / Article
  • Volume: 138
  • Publication Date: 2023
  • Doi Number: 10.1016/j.jmbbm.2022.105570
  • Journal Name: Journal of the Mechanical Behavior of Biomedical Materials
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Biotechnology Research Abstracts, Compendex, EMBASE, INSPEC, MEDLINE, Metadex
  • Keywords: Mineralization-promoting peptide, Mineral trioxide aggregate, Microhardness, Compressive strength, XRD, Raman spectroscopy
  • Ankara Yıldırım Beyazıt University Affiliated: Yes

Abstract

© 2022 Elsevier LtdMineral trioxide aggregate (MTA) has been used widely in dentistry due to its sealing ability and biocompatibility. Delayed setting time is one of the major limitations of MTA. Various additives have been studied to further improve the properties of MTA with varied degrees of success. In this study, we have investigated the effect of a calcium phosphate mineralization promoting-peptide (MPP3) on the physical and chemical properties of MTA in comparison with Na2HPO4. Based on the reported effects of MPP3 on calcium-phosphate mineralization reaction, our hypothesis was that MPP3 may also show beneficial effects on the calcium-silicate mineralization system of MTA. Na2HPO4 was used for comparison since its setting accelerant effect on MTA has been well documented. The cements were prepared by mixing with distilled water, 0.40 mM MPP3 solution, 15% Na2HPO4 solution, and a combination of MPP3 and Na2HPO4 solution. Initial and final setting times were measured via Vicat needle. Microhardness values were measured via Vickers indenter at 1,3,7, and 28 days after hydration. Compressive strength after setting was measured via universal testing machine. Morphological and compositional analyses were performed via FESEM imaging, XRD and Raman spectroscopy. The microhardness data was evaluated via repeated-measures ANOVA. Setting time and compressive strength data were evasluated via one-way ANOVA. Initial setting time was reduced to ∼3 min in the Na2HPO4 containing groups but remained at ∼5 min in the control and MPP3 groups. Final setting times were significantly reduced in all groups compared to the control group. The reduction in the final setting times in the Na2HPO4 containing groups were significantly higher compared to the MPP3 group. Microhardness was significantly higher in the MPP3 group at all time points. No statistically significant difference in compressive strength was observed among the groups. FESEM analysis showed presence of ettringite crystals in the MPP3 group, and NaBiO3 crystals in the Na2HPO4 containing groups. XRD analysis showed a broadening of peaks at 2θ = 32° in the Na2HPO4 containing groups, possibly due to presence of NaBiO3. Raman spectroscopy showed statistically higher ettringite content in the MPP3 containing groups. Our findings indicate that MPP3 is a beneficial additive to eliminate some of the drawbacks associated with MTA with no detrimental effects on mechanical properties and without resulting in phases that potentially cause discoloration, such as NaBiO3. We propose that the reduced final setting time and increased microhardness by MPP3 may be associated with the increased ettringite content. Future studies, where wider range of MPP3 concentrations are studied may help elucidate and optimize the beneficial effects of MPP3 observed in this study.